Свойства дисперсии

Свойство 1. Дисперсия постоянной величины A равна 0 (нулю).

D(A) = 0

Свойство 2. Если случайную величину умножить на постоянную А, то дисперсия этой случайной величины увеличится в А2 раз. Другими словами, постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат.

D(AX) = А2 D(X)

Свойство 3. Если к случайной величине добавить (или отнять) постоянную А, то дисперсия останется неизменной.

D(A X) = D(X)

Свойство 4. Если случайные величины X и Y независимы, то дисперсия их суммы равна сумме их дисперсий.

D(X Y) = D(X) D(Y)

Свойство 5. Если случайные величины X и Y независимы, то дисперсия их разницы также равна сумме дисперсий.

Процентное отклонение с отрицательным числом: формула Excel

D(X-Y) = D(X) D(Y)

Вычисление процентного отклонения для отрицательных чисел

Почти каждый инвестиционный проект пока еще не вышел на точку окупаемости в первый год приносит больше расходов чем доходов. Для этого при составлении бизнес-плана был заложен в бюджет объем просадки инвестиционного портфеля в пределах -10000$. Допустим объектом для инвестирования были криптовалюты биткоин и за первый очень успешный год доходность инвестиционного портфеля взлетела до 12000$.

Почему же мы получили аж -220% отклонения? Ведь известно то, что доход не только перекрыл расходы и преодолел точку окупаемости, но и принес чистую прибыль в размере аж 12000$! Что ж, проблема возникает в том, что если значение отношения является отрицательным, то математическое вычисление возвращает обратный результат.

Для решения данной задачи следует использовать функцию =ABS(), которая преобразовывает отрицательное число в положительное. То есть, функция сама найдет модуль числа (его абсолютную величину). На рисунке показано как ведет себя модифицированная формула для вычисления процентного отклонения с отрицательными числами при любых условиях.

На картинке видно, что доходности инвестиционного портфеля необходимо было преодолеть путь длинною в 220% (22000$), чтобы пройти от -10000$ до 12000$.

Предлагаем ознакомиться  Молоко нормы выдачи за вредность

Из этого следует что доходность инвестиционного портфеля составила 120% годовых, потому как: (22000-10000)/10000=120%. А если мы при такой доходности инвестируем 10000$, то через год не только вернем вложенные средства, а еще и заработаем 12000$.

Отрицательное процентное отклонение.

Интересный факт! На сегодняшний день среднестатистический показатель рискованных инвестиций составляет всего 70% годовых.

Эти формулы можно смело применять как при отрицательных, так и при положительных значениях. Процентное отклонение возвращается безошибочным в результате вычисления формулой с функцией ABS.

Среднеквадратичное (стандартное) отклонение

Как и с дисперсией, есть и немного другой вариант расчета. Но с ростом выборки разница исчезает.

Для расчета стандартного отклонения достаточно из дисперсии извлечь квадратный корень. Но в Excel есть и готовые функции: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В (по генеральной и выборочной совокупности соответственно).

Среднеквадратичное отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными.

Описание примера работы функции ABS

Функция ABS возвращает абсолютное значение величины для любого числа. Если мы ведем в ячейке A1 формулу с функцией ABS в аргументах, которой будет указано отрицательное или положительное число, то в результате функция возвращает всегда только положительное число ABS(-100) = 100. Поэтому функция ABS, использованная в выше описанном примере, позволяет преобразовать отрицательнее число в положительное перед математическим вычислением для нахождения процентного отклонения (в данном случаи с отрицательным бюджетом -10 000$).

Расчет коэффициента вариации в Excel

По нему можно сравнивать однородность явлений даже с разным масштабом данных. В статистике принято, что, если значение коэффициента вариации менее 33%, то совокупность считается однородной, если больше 33%, то – неоднородной. В реальности, если коэффициент вариации превышает 33%, то специально ничего делать по этому поводу не нужно. Это информация для общего представления. В общем коэффициент вариации используют для оценки относительного разброса данных в выборке.

Предлагаем ознакомиться  Права, обязанности, ответственность возникающих у подростков в России

=СТАНДОТКЛОН.В()/СРЗНАЧ()

Коэффициент осцилляции

Еще один показатель разброса данных на сегодня – коэффициент осцилляции. Это соотношение размаха вариации (разницы между максимальным и минимальным значением) к средней. Готовой формулы Excel нет, поэтому придется скомпоновать три функции: МАКС, МИН, СРЗНАЧ.

Коэффициент осцилляции показывает степень размаха вариации относительно средней, что также можно использовать для сравнения различных наборов данных.

Таким образом, в статистическом анализе существует система показателей, отражающих разброс или однородность данных. 

Ниже видео о том, как посчитать коэффициент вариации, дисперсию, стандартное (среднеквадратичное) отклонение и другие показатели вариации в Excel.

Поделиться в социальных сетях: